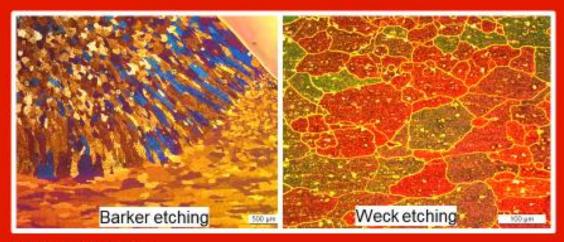
KOMERCIJALNO-TEHNIČKO PREDAVANJE / COMMERCIAL-TECHNICAL PRESENTATIONS

WELDING OF HARDENABLE ALUMINIUM ALLOYS AW 6082 WITH HIGHPERFORMANCE WELDING-PROCESSES

Wilhelm Gerald


Keywords: Modified GMAW processes, precipitation hardening Aluminium alloys, quality, microstructure, mechanical and technological properties

Abstract:

The GMAW process has been applied for many decades to join metals, especially different steel grades and various aluminium alloys. The demands for an increase in productivity combined with an increase in quality are constantly triggering the development of modified GMAW processes. Welding of the precipitation hardening Aluminium alloy AW 6082 leads to a significant decrease of the hardness and the yield strength in the heat affected zone. In addition the material percentage elongation after fracture is reduced. In this investigation the influence of various discontinuous energy regimes of different Lorch Speed Welding Processes on the microstructure, the mechanical and technological properties of the joints and on the performance of the welding process and is analysed. Based on several case studies the benefits of the Lorch Speed Welding Processes are carried out referring to the specifics of railway vehicles.

LORCH

Welding of the precipitation hardening Aluminium alloy AW 6082 in railway industry by applying modern GMAW processes

Prof. Dr.-Ing. G. Wilhelm

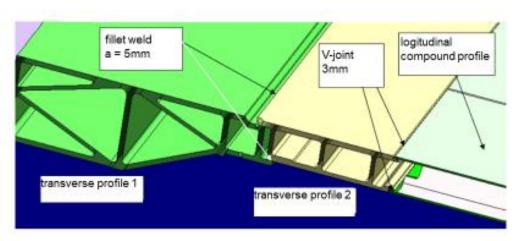
2019 | Lorch Schweißtechnik GmbH | www.lorch.eu

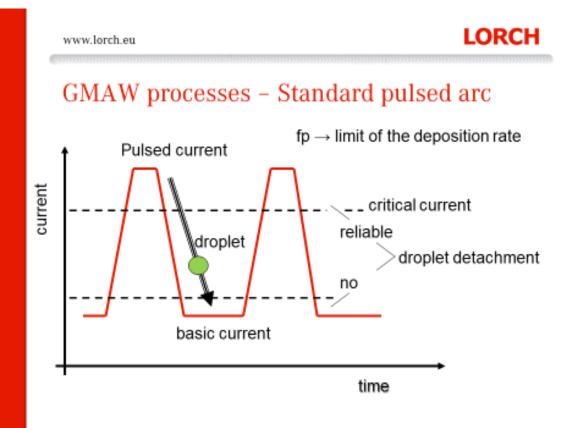
www.lorch.eu LORCH

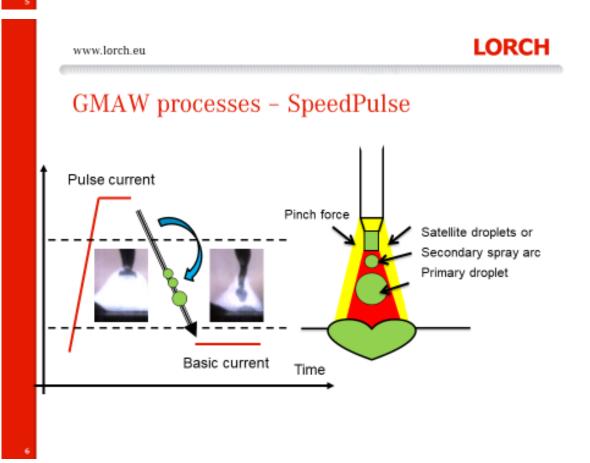
Structure

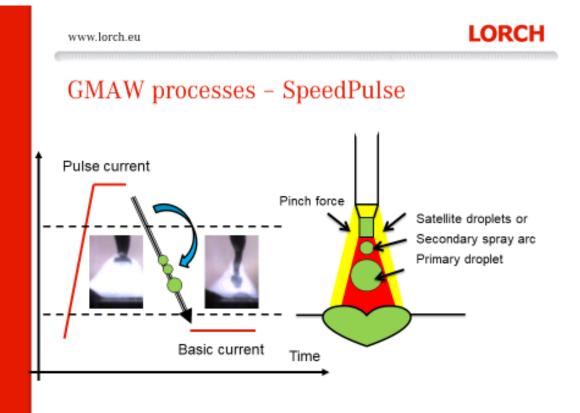
- Examples of welding constructions of precipitation hardening Aluminium in railway industry
- The advantages of the SpeedPulse process when welding AW 6082
 T6
- The base material AW 6082 T6
- The filler metal AlMg4,5Mn
- The weld joint
- Objectives of the investigation
- Method of resolution
- Results
- Conclusions

Customer example

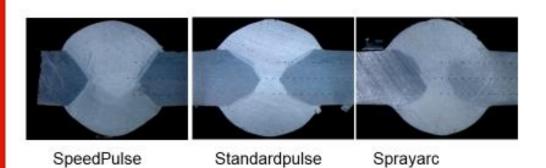

Welded aluminium extrusion profile of a railcar body




www.lorch.eu LORCH

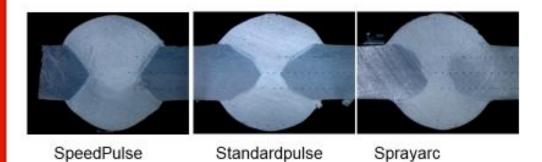

Construction examples

Welded aluminium extrusion profile of a railcar body



Advantages of the SpeedPulse process:

Penetration depth


Base material: AW-6082 T6, t: 6mm

Wire electrode: AIMg4,5Mn, dwire: 1,2mm, welding gas: Ar

Energy per unit length of each weld seam: 4400 J/cm

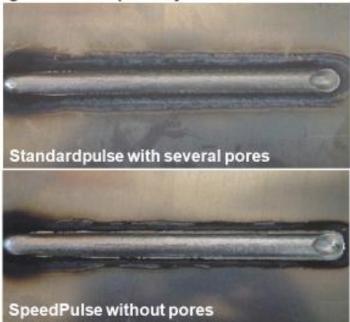
Advantages of the SpeedPulse process:

Penetration depth

Base material: AW-6082 T6, t: 6mm

Wire electrode: AlMg4,5Mn, dwire: 1,2mm, welding gas: Ar

Energy per unit length of each weld seam: 4400 J/cm

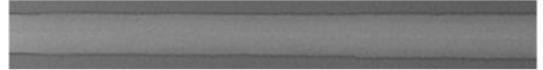

www.lorch.eu

LORCH

Advantages of the SpeedPulse process:

Base metal: AW-6082 T6:

Welding surface and porosity



Advantages of the SpeedPulse process:

Porosity

Standardpulse

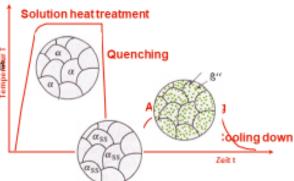
SpeedPulse

www.lorch.eu LORCH

Base material AW 6082 T6: AISi1MgMn

thickness	Si	Fe	Cu	Mn	Mg	Cr	Ni	Zn	Ti
	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
3 mm	0,9	0,33	0,06	0,43	0,7	0,03	k.A.	0,04	0,02
6 mm	0,88	0,35	0,07	0,43	0,84	0,03	0,01	0,06	0,02
8 mm	1,00	0,49	0,08	0,52	0,52	0,08	0,0057	0,082	0,018
20 mm	1,14	0,25	0,07	0,55	0,78	0,02	k.A.	0,04	0,02

thickness	R _m	R _m Rp _{0.2}		A_{so}
UIICKIICSS	[Mpa]	[Mpa]	[%]	
3 mm	346	318		12
6 mm	342	294		16
8 mm	304	275		12
20 mm	319	258		15

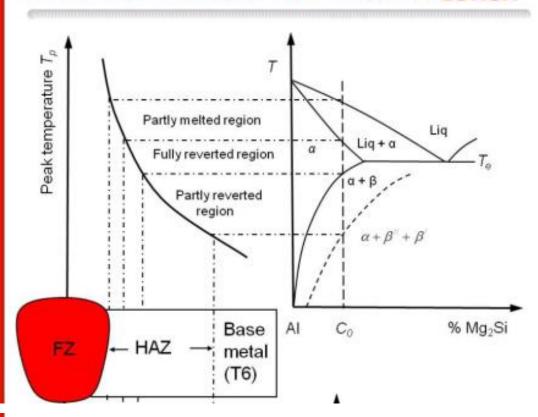

Heat treatment to realise a defined precipitation to increase hardening

- 1. Solution heat treatment
 - is carried out above the solvus temperature in the region
 - → dissolves the secondary phases
 - obtain a homogeneously distributed solid solution
- 2. Quenching
 - no atom diffusion
 - → supersaturated solid solution
 - crucial to obtain the maximum hardening potential
- 3. Artificial aging

Seconds

Hours

- → homogenious distribution of the precipitation nuclei in the matrix
- → Steering of the precipitation process via a time-temperature regime (diffusion)

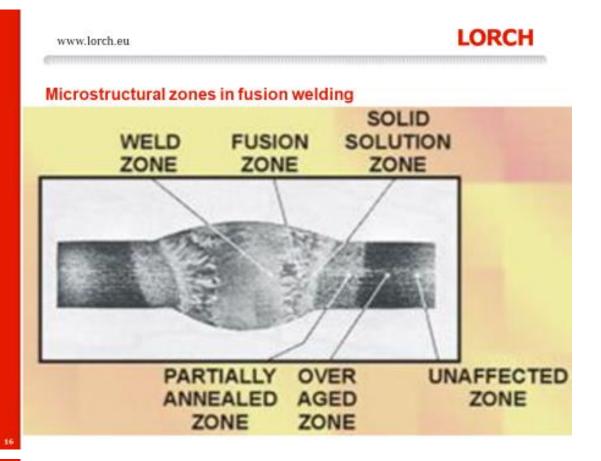

- 4. Cooling down
 - > "Conservation" of the status quo
 - > no further diffusion

16,10.

Strengt	h evolution during arti	LORCH	
Phase	Shape	Space group	Composition
GP-zones	Semi-coherent needles	Monoclinal	Mg _{2+x} Al _{7-x-y} Si _{2+y} , 1 <x+y<< th=""></x+y<<>
β"	Semi-coherent needles	Monoclinal	Mg_5Si_6
β'	Semi-coherent coarser ro	ds Hexagonal	Mg _{1.8} Si
β	Incoherent plates	Cubic	Mg_2Si
SS 83	β	(GP-zones) W:	: solution heat-treated cond : peak-aged condition
W	T6 0	-	fully annealed condition : naturally aged condition

Days Weeks log t

Microstructure and strength evolution during GMAW LORCH



www.lorch.eu LORCH


Wire electrode AIMg4,5Mn

			ACCOR	DING TO	SUPPLIE	RS ANALY	YSIS	
Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Z
0.04	0 120	<0,01	0,62	5.06	0,070	<0.01	0.000	

Welding process Welding gas Heat treatment Test temperature	[°C]	TIG Argon untreated +20°C	MIG Argon untreated +20°C
$R_{p0,2}$	[N/mm ²]	140	140
R _m	[N/mm ²]	280	280
A ₅	[%]	20	20

Strength of the welding joint

Distance from the center of the joint

Major Question

Do the shape and the frequency of the impulse of the SpeedPulse process have an impact on the mechanical and technological properties of the joint?

Objectives of the investigation

- Analysis of the effects of discontinuous energy regimes of different Lorch Speed Welding Processes on the microstructure and the mechanical / technological properties of the joints.
- Quantitative prediction of correlations between R_m, Rp_{0,2} and elongation at fracture.
- Developing a model to predict the elongation at fracture.

www.lorch.eu LORCH

Method of resolution

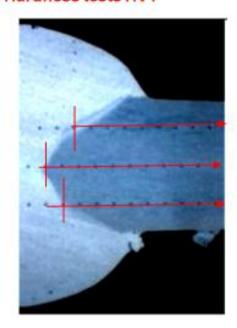
- Boundary conditions of each comparative parameter setting:
 - constant wire speed
 - constant welding speed
 - constant arithmetical mean of the electric power
- Modelling the quasistationary temperature field to estimate the impact of different impulse shapes and frequences on it's distribution
- Welding of the test series
- Determination of HV1 and calculation of R_{p0,2} and R_m.
- Superimposing of the hardness profiles into a relative coordinate system
- Fractionising the joint into several quasionedimensional finite elements with different nonlinear spring rates to calculate the elongation at fracture.
- Tensile tests to verify the calculated results.

Experimental Set Up

- · Linear moving device, PA, backing
- · Divesre shapes of impulses and spray arc

Parameter	100	Unit			
t	3mm	6mm	8mm	20mm	
Vs	35,00	54,50	35,00	54,50	cm / min
Vor	5,50	14,00	14,00	14,00	m / min
K	13	20	20	20	mm
Gas	15,00	25,00	25,00	25,00	1 / min

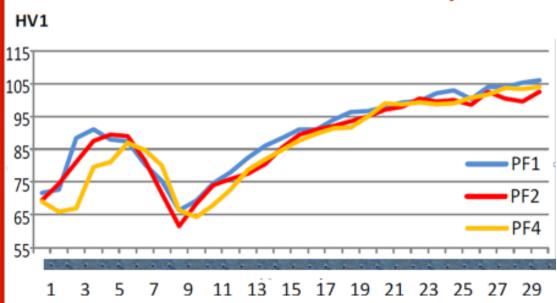
Welding process	Energy per unit length
8mm V-joint, X-joint	812,5 + 1,14 % J/mm
3mm I-joint	225,6 + 0,75 % J/mm
6mm V-joint	437,3 + 1,63 % J/mm
6mm double side welded	437,3 + 1,63 % J/mm
20mm X joint	874,7 + 0,92 % J/mm


www.lorch.eu

LORCH

Hardness tests HV1

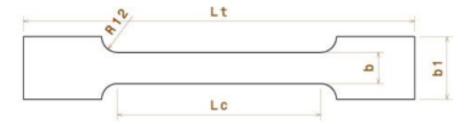
Depth measured from the upper edge	3mm plate thickness	6mm plate thickness	8mm plate thickness	20mm plate thickness
1. Hardness profile	1,5mm	1,2 mm	1,5 mm	1,2 mm
2. Hardness profile	-	3,0 mm	3,6 mm	3,0 mm
3. Hardness profile	-	4,8 mm	6,5 mm	4,8 mm
4. Hardness profile	-	-	-	8,0 mm
5. Hardness profile	-	-	-	13,0 mm
6. Hardness profile	-	-	-	17,5 mm


Hardness tests HV1

$$R_{p0.2} (MPa) = 3.0 \text{ HV} - 48.1$$

 $R_{m} (MPa) = 2.6 \text{ HV} + 39.8$

www.lorch.eu LORCH


Results: Hardness tests HV1 in a relative coordinate system

Hardness profile, t = 8mm, V-joint, at a depth of 3 mm

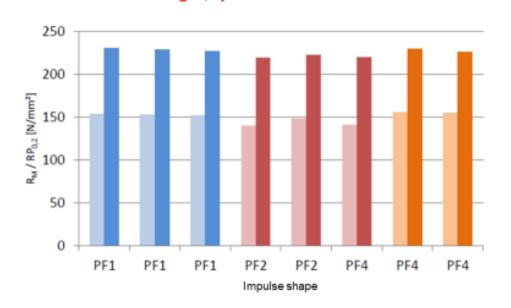
Results: tensile test

EN ISO 4136

Specimen shape	Lt	Lc	Lo	b	b1	t
1	150 mm	75 mm	50 mm	12 mm	24 mm	2 mm
2	300 mm	130 mm	70 mm	25 mm	36 mm	7 mm

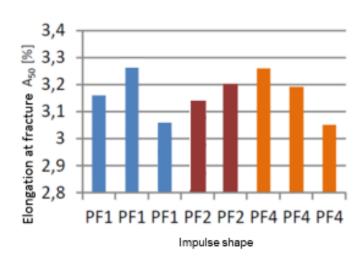
24

www.lorch.eu


LORCH

Results: tensile strength, specimen 1

Process	Fracture position	Rp _{0,2} [MPa]	R _m	A ₅₀
PF1	HAZ	137,34	209,34	3,60
PF1	HAZ	143,82	204,74	3,23
PF2	HAZ	136,30	205,10	3,26
PF2	HAZ	135,96	205,36	3,47
PF4	HAZ	135,85	200,19	3,11
PF4	HAZ	127,07	201,64	3,06


Hardness profile, t = 8mm, V-joint, at a depth of 3 mm

Results: tensile strength, specimen 2

www.lorch.eu LORCH

Results: Elongation, specimen 2

Conclusions

- Advantages of the SpeedPulse process
- Higher deposition rate
- less porosity
- deeper penetration
- The hardness, the tensile strenght and the elongation do not significantly depend on the shape and the frequency of the impulse
- Onedimensional modelling of the elongation at fracture is still in progress

The advantages of the SpeedPulse process can be applied without any metallurgical disadvantages.

28

LORCH Thank you for your attention Lorch Schweißtechnik GmbH | www.lorch.eu