

GMA ZAVARIVANJE LEGURA NIKLA

GMA WELDING NICKEL ALLOYS

Christoph MATZ¹⁾

Ključne riječi: zavarivanje, kladiranje, plinovi, legure nikla, primjena, CRONIGON®

Key words: welding, cladding, gases, Nickel alloys, application, CRONIGON®

Sažetak: Zavarivanje s CRONIGON[®] plinovima umjesto čistog argona kod GMA-zavarivanja legura nikla dovodi do povećanja performansi procesa (komada ili m²) poboljšava kvalitetu, smanjuje popravke, štedi dodatni materijal ili skraćuje pomoćne procese zavarivanja (bolja stabilnost procesa).

Abstract: Usage of CRONIGON[®] -welding gases instead of straight argon in GMA-welding of Ni-alloys results in an added value by increased process performance (pieces or m²), improved quality, less rework, savings in filler metal or reduced auxiliary process time (better process stability).

¹⁾ Manufacturing Industry, Linde AG, Linde Gas Division, Carl-von-Linde-Str. 25, D - 85716 Unterschleissheim

1. FIELDS OF APPLICATION FOR NICKEL ALLOYS

- Chemical and petrochemical industry
- Industrial furnaces
- Power industry and environmental care
- Oil and gas production
- Off-shore technology
- Automotive industry
- Aeronautics and space industry

2. CLASIFICATION BY DEMAND / APPLICATION

Corosion:

- Reducing acids:sufurous acid, phosphoric acid, hydrochloric acid, organic acids
- Oxidizing acids: nitric acid and other oxidizing agents, urea production
- Hot alkaline (KOH, NaOH) and brines (KCl, NaCl)
- Seawater and chloride-containing cooling water
- Hot gases and combustion products (heat-resistant materials)

Mechanical load:

• At very high temperatures (creep – resisting materials)

Nickel alloys - typical alloy systems

Nickel

+ Water, seawater, brines, alkaline
- sulfurous-, nitric and phosphoric acid (inorganic acids), acetic acid (organic acid)

Nickel-Copper

- + Seawater, thinned HCl, hydrofluoric acid, saline solutions, caustic soda
- hihhly concentrated acids (e.g. sulfurous acid, nitric acid, phosphoric acid)

Nickel-Molybdenum

+ good overall resistance

Nickel-Chromium-Iron

- + High-temperature-alloys
- Limited wet corrosion propertis

Nickel-Chromium-Molydbenum

+ Outstanding resistance in virtually all corrosive agents

Nickel-Chromium-Iron-Molydbenum-Copper

- + Higher resistance than austenitic steels, esp. in sulfurous and phosphoric acid
- Lower resistance than Ni-Cr-Mo

3. GENERAL RULES FOR WELDING NICKEL ALLOYS

- Absolute neatness and cleanlines of the workplace
- Use of seperate and special tools
- Cleaning of the work piece directly prior to welding (degreasing)
- Weld preparation preferably with machining
- Adjust welding parameters (e.g. pulse time or voltages)
- Observe interpass temperatures
- The use of modern pulsed arc power source is strongly recommended
- Keep contact with the alloy manufacturer

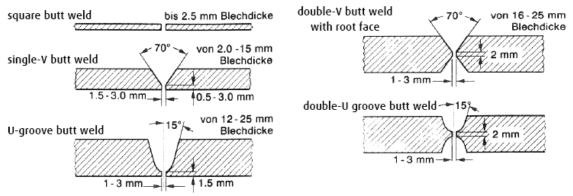
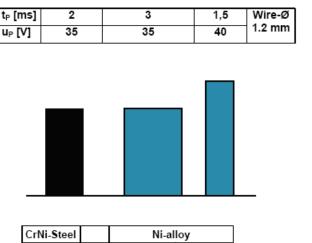



Figure 1. Seam preparation used in Ni-alloy welding

CrNi-Steel		Ni-alloy				
	vw	slower		faster		
	Pos.	PA	PB	PA	PB	РС
		w	h	w	h	q

Ideal pulse shape is tuned with respect to

- Base metal
- Welding gas
- Wire-Ø
- Position

Pulse frequency

- is set using t_{B} or directly
- · depends on wire feed speed

Power source

- preprogrammed
- freely adjustable

Figure 2. MAG welding of Ni-alloys - Power source adjustment

4. EFFECTS OF SHIELDING GAS COMPONENTTS

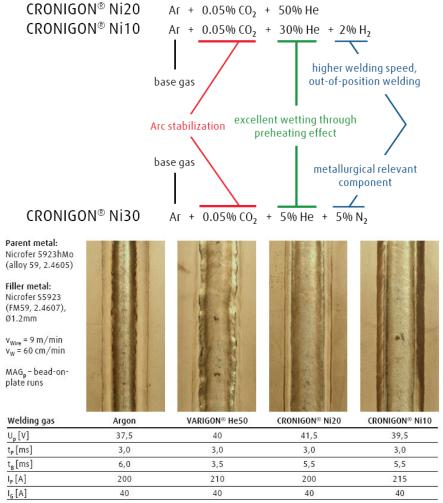


Figure 3. Welding gas influence on arc stability and surface quality

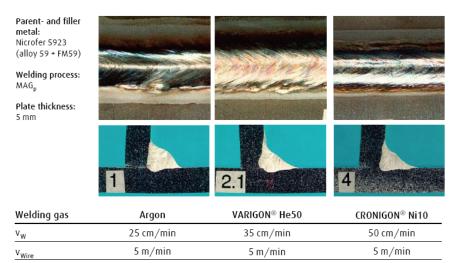


Figure 4. Welding gas influence on penetration and welding speed

5. Međunarodno znanstveno-stručno savjetovanje **SBZ 2009 ROBOTIZACIJA I AUTOMATIZACIJA U ZAVARIVANJU I OSTALIM TEHNIKAMA** Slavonski Brod, 11. - 13. studeni 2009.

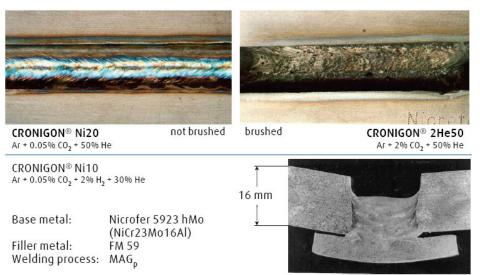


Figure 5. Mag welding of Ni-alloys-shieding gas influence

5. NI-ALLOYS – WELDING GAS OVERVIEW

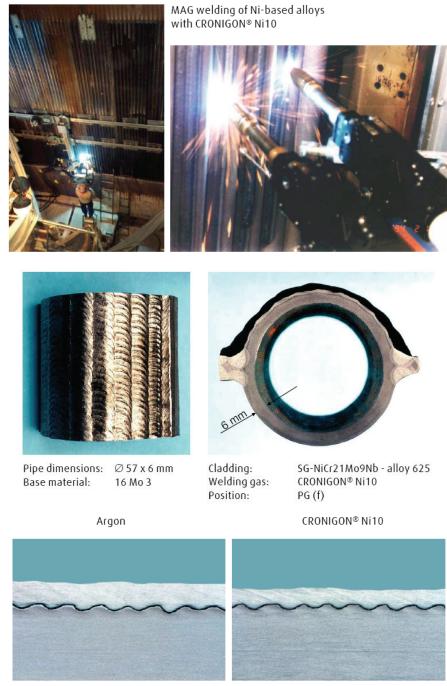
<u>TIG / Plasma</u>

- Argon
- Argon / Hydrogen (H₂- content usually 2-10%)
- Argon / Helium (He- content usually 10-50%)
- Argon / Nitrogen (N₂- content usually 1-3%)

MAG

- $\overline{\text{CRONIGON}^{(8)}}$ Ni10 (30%He + 2%H₂ + 0,05%CO₂ + Ar)
- CRONIGON[®] Ni11 (15%He + 2%H₂ + 0.05%CO₂ + Ar)
- CRONIGON[®] Ni20 (50%He + 0,05%CO₂ + Ar)
- CRONIGON[®] Ni10 (5%He + 5%N₂ + 0,05%CO₂ + Ar)

6. MATERIAL TESTED


So far CRONIGON[®] Ni10 was successfully tested on:

- alloy B-2 (2.4617, NiMo28)
- alloy 625 (2.4856, NiCr22Mo9Nb)
- alloy 59 (2.4605, NiCr23Mo16Al)
- alloy 718 (2.4663, NiCr23Co12Mo)
- FM 82 (2.4806, UNS: N06082, SG-NiCr20Nb)

and several others.

7. CLADDING OF FINNED TUBES FOR WASTE INCINERATION PLANTS

Cladding performance: 7.2 h/m² ~ 0.139 m²/h Filler metal: Alloy 625, Ø 1,2 mm Parent metal: 16Mo3

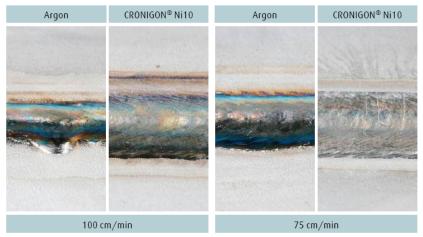
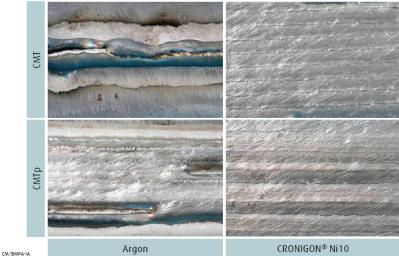
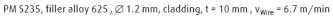
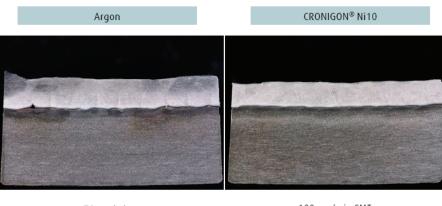

 $5.2 \text{ h/m}^2 \sim 0.192 \text{ m}^2/\text{h}$

Figure 6. Cladding of finned tubes for waste incinetarion plants




8. WELDING GAS INFLUENCE IN CMT-WELDING


PM alloy 625, similar filler metal, Ø 1.2 mm, overlap joint, t = 3 mm, v_{Wire} = 8 m/min

PM S235, filler alloy 625 , \varnothing 1.2 mm, cladding, t = 10 mm, v_{Wire} = 6.7 m/min

9. U/I – ANALYSIS

10. SUPPLAY SOLUTION: i-GAS PRINCIPLE FOR CRONIGON[®] Ni10/1

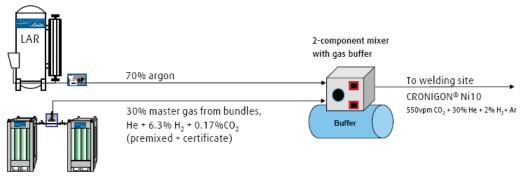


Figure 9. Supplay solution: i-GAS principle for CRONIGON® Ni10/1

- The giggest part of the welding gas is taken from the "cheap" already existing argon pipeline.
- The relatively small amount of helium hydrogen and CO₂ is taken from cylinders or bundles as a premixed "Master-Gas".
- The 4-component welding gas is made with a standard 2-component gas mixing device
- A CO₂ meter to monitor the exact amount of the CO₂- doping also informs about He and H₂ content of the gas mix

11. SUPPLAY SOLUTION: i-GAS PRINCIPLE FOR CRONIGON[®] Ni10/2

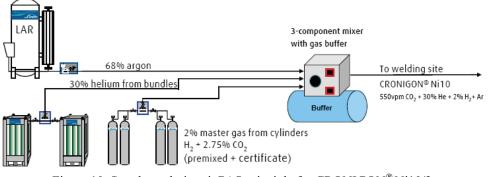


Figure 10. Supplay solution: i-GAS principle for CRONIGON[®] Ni10/2

- a. Advantage: Much greater flexibility for He and H₂-contents
- b. Drawback: Higher handling sffort, more complicated 3-component gas mixer
- c. A CO_2 meter to monitor the exact amount of the CO_2 doping also informs about H_2 content of the gas mix

12. WRAP-UP

All quality requirements in MAG-welding of Ni-alloys under CRONIGON[®] -welding gases:

- mechanical-technological values
- corrosion resistance
- crack-resistance
- flexibility during application
- spatter free droplet transfer

were met

Improved economy of MAG_p and welding processes with regulated short-arc (CMT, coldArc[®], STT etc.) by using CRONIGON[®]-welding gases:

- higher welding speed respectively cladding perfomance
- increased machine uptime(stabilized process, less prone to interference)
- reduction of rework (spatter removal, smoothing of welds)
- reduced filler metal consumption (more precise control over cladding thickness)
- less repair welding (savings in work hours, grinding devices and expensive filler metal).

Usage of CRONIGON[®] -welding gases instead of straight argon in GMA-welding of Nialloys results in an added value by increased process perfomance (pieces or m²), improved quality, less rework, savings in filler metal or reduced auxiliary proces time (beter process stability).

13. REFERENCES

- [1] Ammann, Th., Heinemann, J.: Influence of shielding gases on corrosion properties of nickel alloy weldments. Linde Gas publication, 2005.
- [2] Geipl, H.: "Process for shielded arc welding and shielding gas therefor." European Patent EP 0 639 427 (1997).
- [3] Geipl, H.: Pulsed MAGM welding of nickel alloy. Linde Gas publication, 1997.
- [4] Heubner, U., Klöwer, J.: Nickelwerkstoffe und hochlegierte Sonderedelstähle. Eigenschaften -Verarbeitung - Anwendungen. ThyssenKrupp VDM publication. Expert-Verlag, 2002.

GMA welding of nickel alloys.

Dipl.-Ing. EWE Christoph Matz SBZ 2009 Slavonski Brod, 11.-13.11.2009

Linde

Fields of application for Nickel alloys

- Chemical and petrochemical industry
- Industrial furnaces
- Power industry and environmental care
- Oil and gas production
- Off-shore technology
- Automotive industry
- Aeronautics and space industry

Classification by demand / application

<u>Corrosion:</u>

• Reducing acids:

sulfurous acid, phosphoric acid, hydrochloric acid, organic acids

• Oxidizing acids:

nitric acid and other oxidizing agents, urea production

- Hot alkaline (KOH, NaOH) and brines (KCl, NaCl)
- Seawater and chloride-containing cooling water
- Hot gases and combustion products

(heat-resistant materials)

Mechanical load:

 At very high temperatures (creep-resisting materials)

Nickel alloys - typical alloy systems

Nickel

- + Water, seawater, brines, alkaline
- sulfurous-, nitric and phosphoric acid (inorganic acids), acetic acid (organic acids)

Nickel-Copper

- + Seawater, thinned HCL, hydrofluoric acid, saline solutions, caustic soda
- highly concentrated acids (e.g. sulfurous acid, nitric acid, phosphoric acid)

Nickel-Molybdenum

+ good overall resistance

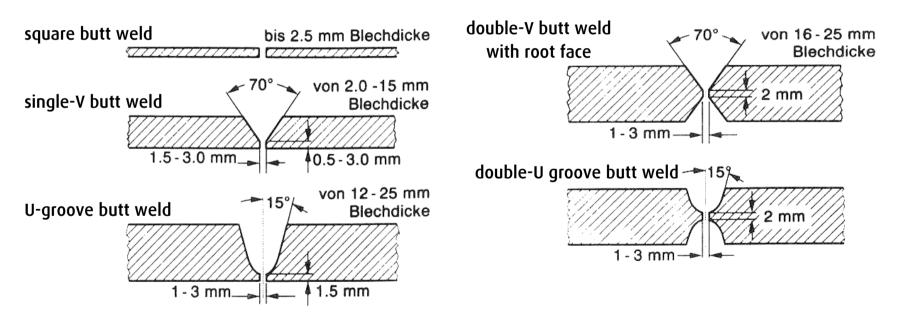
Nickel-Chromium-Iron

- + High-temperature-alloys
- Limited wet corrosion properties

Nickel-Chromium-Molybdenum

+ Outstanding resistance in virtually all corrosive agents

Nickel-Chromium-Iron-Molybdenum-Copper

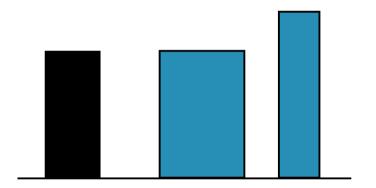

- + Higher resistance than austenitic steels, esp. in sulfurous and phosphoric acid
- Lower resistance than Ni-Cr-Mo

General rules for welding Nickel alloys

- Absolute neatness and cleanliness of the workplace
- Use of separate and special tools
- Cleaning of the work piece directly prior to welding (degreasing)
- Weld preparation preferably with machining
- Adjust welding parameters (e.g. pulse time or voltages)
- Observe interpass temperatures
- The use of modern pulsed arc power sources is strongly recommended
- Keep contact with the alloy manufacturer

Linde

Seam preparation used in Ni-alloy welding



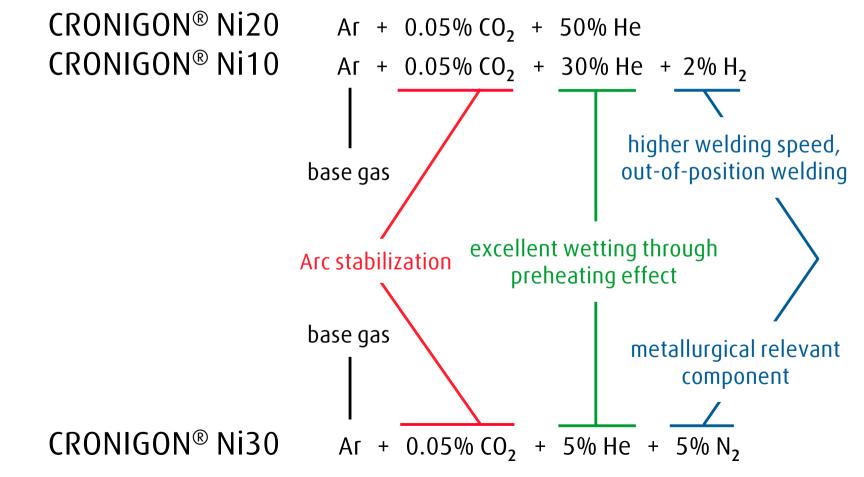
MAG welding of Ni-alloys - Power source adjustment

t _P [ms]	2	3	1,5	Wire-Ø
u _P [V]	35	35	40	1.2 mm

CrNi-Steel		Ni-alloy				
	Vw	slower		faster		
	Pos.	ΡΑ	PB	PA	PB	PC
		w	h	w	h	q

Ideal pulse shape is tuned with respect to

- Base metal
- Welding gas
- Wire-Ø
- Position


Pulse frequency

- is set using t_B or directly
- depends on wire feed speed

Power source

- preprogrammed
- freely adjustable

Welding gas influence on arc stability and surface quality

THE LINDE GROUP

Parent metal: Nicrofer 5923hMo (alloy 59, 2.4605)

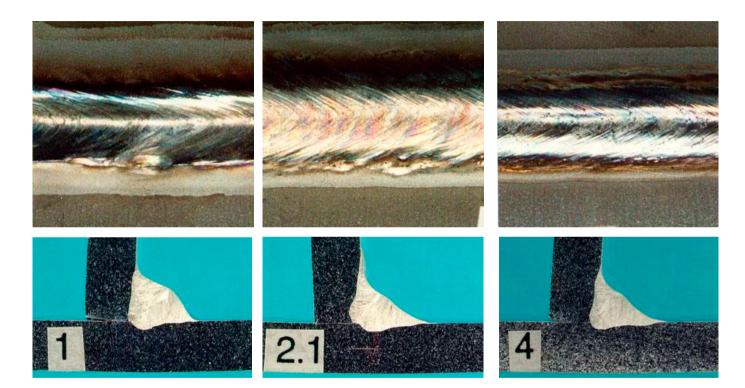
Filler metal: Nicrofer S5923 (FM59, 2.4607), Ø1.2mm

v_{Wire} = 9 m/min v_w = 60 cm/min

MAG_p – bead-onplate runs

Welding gas	Argon	VARIGON [®] He50	CRONIGON® Ni20	CRONIGON® Ni10
U _p [V]	37,5	40	41,5	39,5
t _P [ms]	3,0	3,0	3,0	3,0
t _B [ms]	6,0	3,5	5,5	5,5
Ι _Ρ [A]	200	210	200	215
I _G [A]	40	40	40	40
				0

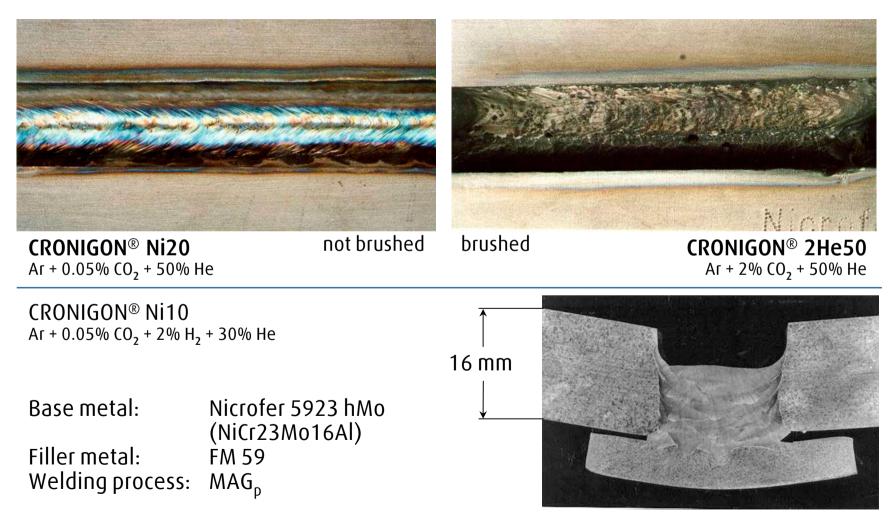
Welding gas influence on penetration and welding speed



Parent- and filler metal: Nicrofer 5923 (alloy 59 + FM59)

Welding process: MAG_{p}

Plate thickness: 5 mm



Welding gas	Argon	VARIGON [®] He50	CRONIGON [®] Ni10
v _w	25 cm/min	35 cm/min	50 cm/min
V _{Wire}	5 m/min	5 m/min	5 m/min

MAG welding of Ni-alloys - shielding gas influence

THE LINDE GROUP

Ni-alloys - Welding gas overview

TIG / Plasma

• Argon

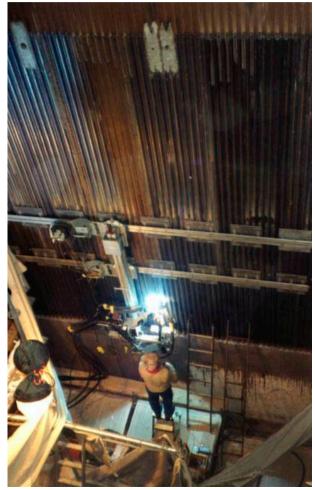
- Argon / Hydrogen (H₂-content usually 2-10%)
- Argon / Helium (He-content usually 10-50%)
- Argon / Nitrogen (N₂-content usually 1-3%)

MAG

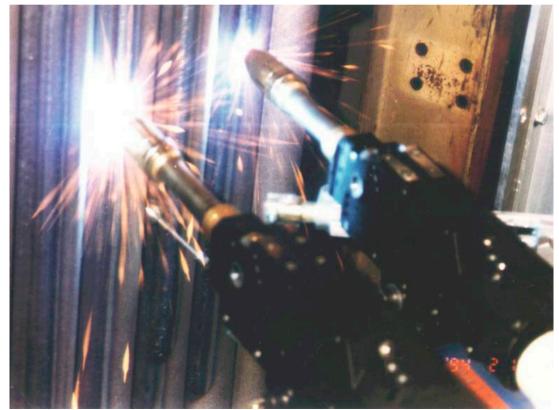
- CRONIGON[®] Ni10 (30% He + 2% H_2 + 0.05% CO₂ + Ar)
- CRONIGON[®] Ni11 (15% He + 2% H_2 + 0.05% CO₂ + Ar)
- CRONIGON[®] Ni20 (50% He + 0.05% CO₂ + Ar)
- CRONIGON[®] Ni30 (5% He + 5% N₂ + 0.05% CO₂ + Ar)

Materials tested

So far CRONIGON[®] Ni10 was successfully tested on:

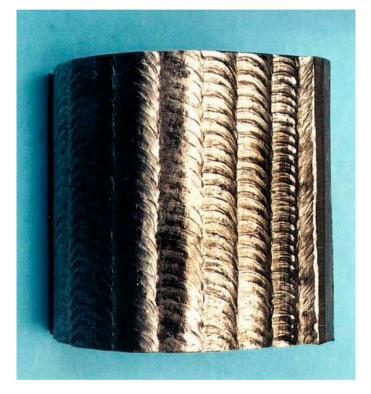

- alloy B-2 (2.4617, NiMo28)
- alloy 625 (2.4856, NiCr22Mo9Nb)
- alloy 59 (2.4605, NiCr23Mo16Al)
- alloy 718 (2.4663, NiCr23Co12Mo)
- alloy 617 (2.4663, NiCr23Co12Mo)
- FM82 (2.4806, UNS: N06082, SG-NiCr20Nb)

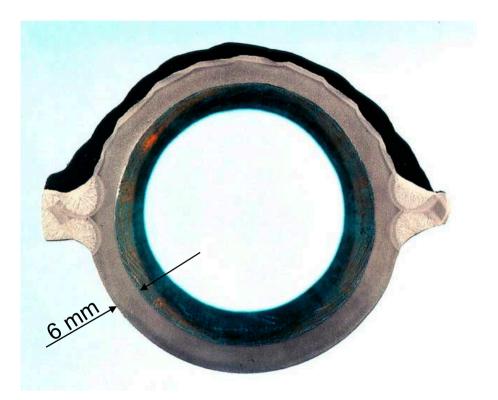
and several others.


Cladding of finned tubes for waste incineration plants

THE LINDE GROUP

MAG welding of Ni-based alloys with CRONIGON® Ni10



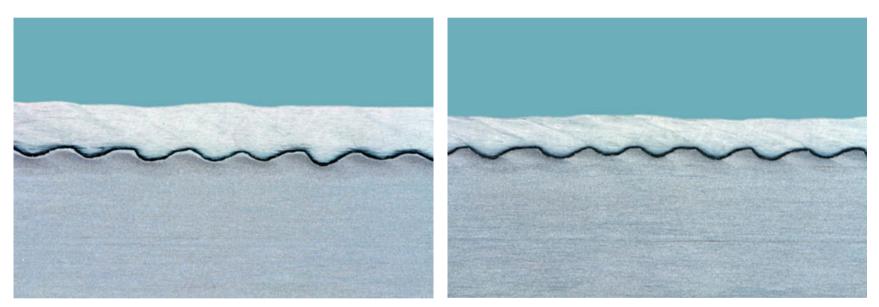

CM/BMPA-IA

Cladding of finned tubes for waste incineration plants

THE LINDE GROUP

Pipe dimensions: \varnothing 57 x 6 mmBase material:16 Mo 3

Cladding: Welding gas: Position: SG-NiCr21Mo9Nb - alloy 625 CRONIGON[®] Ni10 PG (f)


Cladding of finned tubes for waste incineration plants

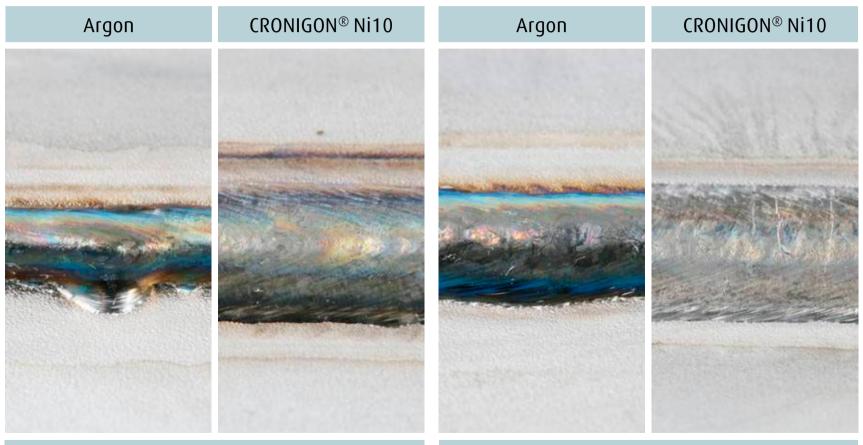
THE LINDE GROUP

Argon

CRONIGON® Ni10

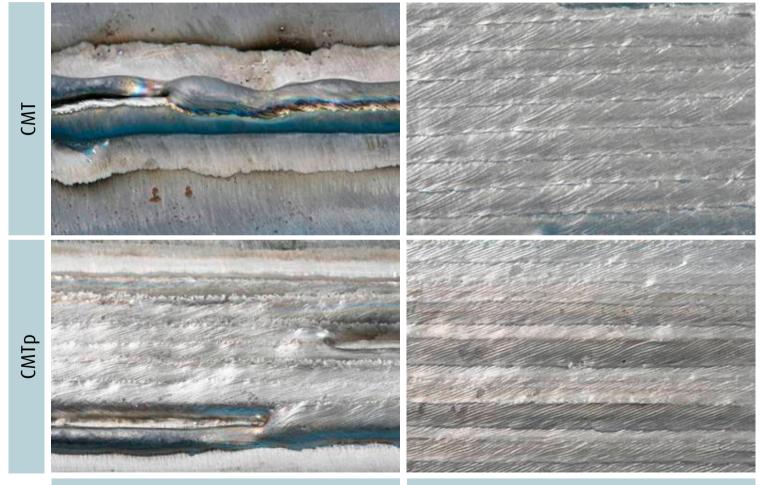
Cladding performance: Filler metal: Parent metal:

7.2 h/m² ~ 0.139 m²/h Alloy 625, Ø 1,2 mm 16Mo3


 $5.2 \text{ h/m}^2 \sim 0.192 \text{ m}^2/\text{h}$

Welding gas influence in CMT-welding

PM alloy 625, similar filler metal, \emptyset 1.2 mm, overlap joint, t = 3 mm, v_{Wire} = 8 m/min

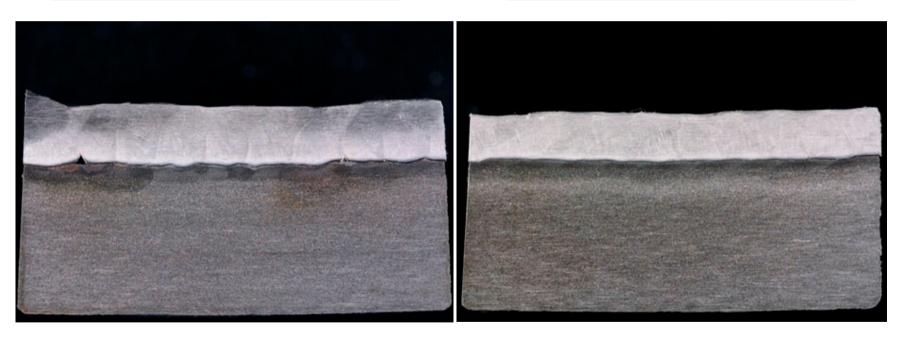

100 cm/min

75 cm/min

Welding gas influence in CMT-welding

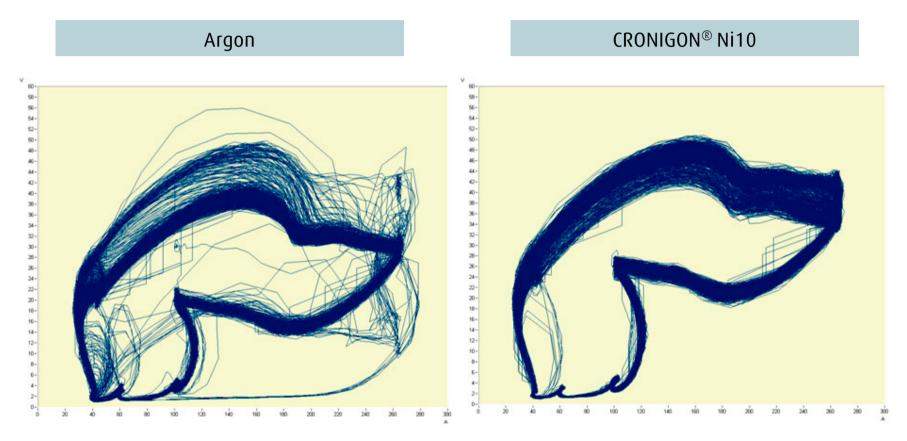
PM S235, filler alloy 625 , \varnothing 1.2 mm, cladding, t = 10 mm, v_{Wire} = 6.7 m/min

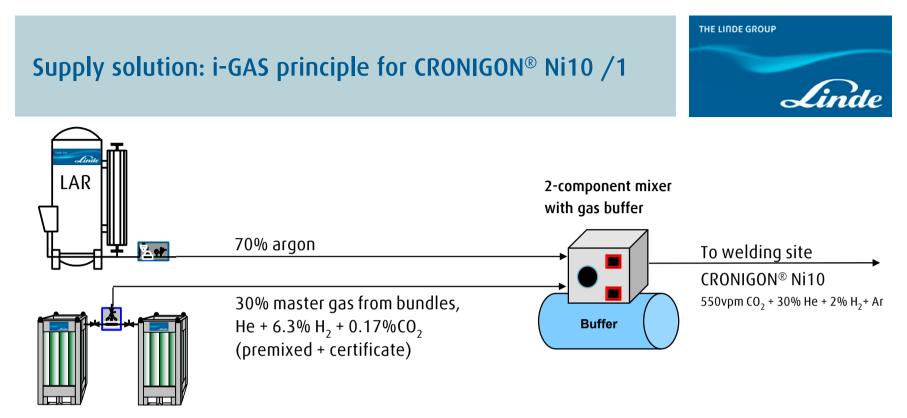
Welding gas influence in CMT-welding


THE LINDE GROUP

PM S235, filler alloy 625 , \emptyset 1.2 mm, cladding, t = 10 mm , v_{Wire} = 6.7 m/min

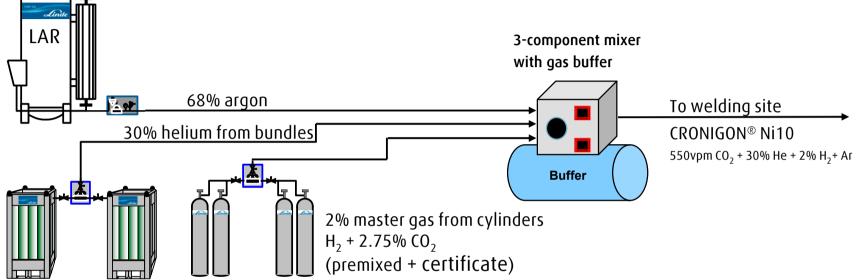
Argon


CRONIGON[®] Ni10



v_w = 70 cm/min Cladding performance: 7.8 h/m² Layer thickness ~ 4 mm v_w = 100 cm/min CMT Cladding performance: 5.45 h/m² Layer thickness ~ 3 mm U/I-analysis

THE LINDE GROUP



- \Rightarrow The biggest part of the welding gas is taken from the "cheap" already existing argon pipeline.
- \Rightarrow The relatively small amount of helium, hydrogen and CO₂ is taken from cylinders or bundles as a premixed "Master-Gas".
- \Rightarrow The 4-component welding gas is made with a standard 2-component gas mixing device
- $\Rightarrow~$ A CO $_2$ meter to monitor the exact amount of the CO $_2$ -doping also informs about He and H $_2$ content of the gas mix

Supply solution: i-GAS principle for CRONIGON® Ni10 /2

- \Rightarrow Advantage: Much greater flexibility for He and H₂-contents
- ⇒ Drawback: Higher handling effort, more complicated 3-component gas mixer
- \Rightarrow A CO₂ meter to monitor the exact amount of the CO₂-doping also informs about the H₂ content of the gas mix

All quality requirements in MAG-welding of Ni-alloys under CRONIGON®-welding gases

- mechanical-technological values
- corrosion resistance
- crack-resistance
- flexibility during application
- spatter free droplet transfer

were met

Improved economy of MAG_p and welding processes with regulated short-arc (CMT, coldArc[®], STT etc.) by using CRONIGON[®]-welding gases

- higher welding speed respectively cladding performance
- increased machine uptime (stabilized process, less prone to interference)
- reduction of rework (spatter removal, smoothing of welds)
- reduced filler metal consumption (more precise control over cladding thickness)
- less repair welding (savings in work hours, grinding devices and expensive filler metal)

Usage of CRONIGON[®]-welding gases instead of straight argon in GMA-welding of Nialloys results in an added value by increased process performance (pieces or m²), improved quality, less rework, savings in filler metal or reduced auxiliary process time (better process stability)

This value added outweighs by far the higher cost of the adopted welding gas

Overall improved performance and economy

Thank you very much for your attention